1 СИГНАЛИ ТА ЇХ ХАРАКТЕРИСТИКИ

Задача 1.4. Розрахувати і побудувати амплітудно-частотну (АЧХ) характеристику імпульсу електричної напруги, зображеного на рис. Амплітуда U = 7 В, тривалість $\tau = 2$ мс. Визначити практичну ширину спектру (ПШС) імпульсу.

Розв'язування

Функція, що описує зображений на рис. 1.1, а) сигнал, може бути представлена у вигляді

$$X(t) = \begin{cases} A при - \tau / 2 \le t \le +\tau / 2; \\ 0 при t < -\tau / 2 або t > +\tau / 2 \end{cases}$$

Спектральна щільність сигналу:

$$S(j\omega) = \int_{-\infty}^{\infty} X(t) e^{-j\omega t} dt.$$

Можемо обмежити область інтегрування зоною, де *X*(*t*) відрізняється від нуля. У цій зоні *X*(*t*) = А. Тобто,

$$S(j\omega) = \int_{-\tau/2}^{\tau/2} A e^{-j\omega t} dt = A \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt = 7 \int_{-0,001}^{0,001} e^{-j\omega t} dt,$$

Маємо табличний інтеграл $\int e^{ax} dx$, первісна функція для якого $\frac{e^{ax}}{a}$, отже

$$S(j\omega) = 7 \frac{e^{-j\omega t}}{-j\omega} \begin{vmatrix} 0,001 \\ -0,001 \end{vmatrix} = \frac{7}{-j\omega} (e^{-j0,001\omega} - e^{j0,001\omega}) = \frac{7}{\omega} \frac{(e^{j0,001\omega} - e^{-j0,001\omega})}{j}.$$

Використовуючи формулу Ейлера:

$$\frac{(e^{jx}-e^{-jx})}{2j}=\sin x,$$

отримаємо:

$$S(j\omega) = \frac{7}{\omega} 2\sin(0,001\omega) = \frac{14\sin(0,001\omega)}{\omega}$$

Помножимо і розділимо на 0,001:

$$S(j\omega) = 0,001 \cdot 14 \frac{\sin(0,001\omega)}{0,001\omega} = 0,014 \frac{\sin(0,001\omega)}{0,001\omega}$$

Модуль спектральної щільності

$$F(\omega) = |S(j\omega)| = \left|0,014 \frac{\sin(0,001\omega)}{0,001\omega}\right| = 0,014 \left|\frac{\sin(0,001\omega)}{0,001\omega}\right|.$$

Відомо, що $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Тому при нульовій частоті ($\omega \to 0$) амплітуда АЧХ є рівною 0,014.

Графік функції *sinx/x* є синусоїдою, амплітуда якої зменшується зі зростанням *x*:

Точки перетину АЧХ з віссю абсцис знайдемо, прирівнявши вираз АЧХ до нуля:

$$0,014 \left| \frac{\sin(0,001\omega)}{0,001\omega} \right| = 0;$$

$$\sin(0,001\omega) = 0.$$

Функція синусу приймає нульові значення при наступних значеннях аргументу:

0,001ω=kπ;

 $\omega = k\pi / 0,001 = 1000 \text{ km}.$

Оскільки у виразі для АЧХ береться абсолютна величина, усі півхвилі синусоїди є позитивними:

Оскільки 90-відсоткова ПШС імпульсу співпадає з першою «пелюсткою» спектра, приймаємо ПШС рівною $1000\pi = 3140$ рад/с.

Задача 1.4 (MatLab). Побудувати спектр одиничного прямокутного імпульсу з амплітудою A=4,8 В і тривалість 2т, де т =0,5 мс.

Розв'язування

Побудуємо спектр сигналу за допомогою програмного середовища MatLab.

У командному вікні MatLab задаємо амплітуду А=4.8 і тривалість tau=0.0005.

Оскільки комп'ютер не може обробляти аналогові сигнали, то вони представляютья у дисктеризованому вигляді. Задаємо інтервал дискретизації у 10 разів менший за тривалість імпульсу: dt= tau/5. Створимо вектор з 10000 значень часу t=0:dt:10000*dt;

Моделюємо заданий сигнал.

а) створюємо вектор нульових значень сигналу з довжиною, рівною довжині вектора часу:

x(1:length(t))=0;

б) протягом часу довжини імпульсу значення сигналу дорівнює амплітуді А:

x(1:2*tau/dt)=A;

Для контролю побудуємо графік сигналу для перших 100 значень:

plot(t(1:100),x(1:100))

Упевнились, що амплітуда прямокутного імпульсу є рівною 4.8, а протяжність 1 мс

Застосуємо для цього сигналу дискретне перетворення Фур'є. Це робиться за допомогою функції fft:

y=fft(x);

Комплексний спектр визначається за допомогою функції fftshift:

Sp=fftshift(y);

Модуль комплексного спектра дає амплітудний спектр

amp=abs(Sp);

а аргумент – спектр фаз:

ph=angle(Sp);

Задаємо ширину смуги частот для побудови спектра

Fs=16000;

Для побудови частотних характеристик задаємо крок дискретизації частоти df=Fs/10000;

і отримуємо вектор з 10000 значень частоти:

f=-Fs/2:df:Fs/2;

Будуємо графіки:

plot(f,amp); plot(f,ph)

Задача 1.5. Визначити АЧХ і ФЧХ сигналу, заданого виразом:

$$X(t) = ae^{-bt}$$
, ge $a=10$, $b=0.1$, $t\geq 0$.

Розв'язування

Використавши інтегральне перетворення Фур'є для t що змінюється від 0 до нескінченності, отримаємо

$$X(\omega) = \int_{0}^{\infty} a e^{-bt} e^{-j\omega t} dt = a \int_{0}^{\infty} e^{-(b+j\omega)t} dt = -\frac{a}{b+j\omega} e^{-(b+j\omega)t} \bigg|_{0}^{\infty} = \frac{a}{b+j\omega} = \frac{10}{0.1+j\omega}$$

Таким чином, спектральна функція експоненціального імпульсу є комплексною функцією частоти. АЧХ і ФЧХ сигналу отримаємо як модуль і аргумент цієї функції:

$$F(\omega) = |X(\omega)| = \frac{|10|}{|0.1 + j\omega|} = \frac{10}{\sqrt{0.1^2 + \omega^2}}, \quad \varphi(\omega) = -\operatorname{arctg} \frac{\omega}{0.1}.$$

Побудова графіків

У Microsoft Excel заносимо вихідні дані для графіка:

	1	А	В	С	D
1	1	Задача 1.5	5		
1	2	а	10	b	0,1

Заповнюємо стовпчик А значеннями частоти у логарифмічному масштабі:

	Α	В	С	D
1	Задача 1.5			
2	а	10	b	0,1
3	1			
4	1,7			
5	3			
6	5,6			
7	10			
8	17			
9	30			
10	56			
11	100			

У комірки В3 і С3 заносимо формули для розрахунку $F(\omega)$ і $\phi(\omega)$, отримані в ході розв'язання задачі:

=\$B\$2/КОРЕНЬ(\$D\$2*\$D\$2+А3*А3) для F(ω);

=-ATAN(A3/\$D\$2) для φ(ω).

Розповсюджуємо дані комірок ВЗ і СЗ вниз для усіх частот

	А	В	С	D
1	Задача 1.5			
2	a	10	b	0,1
3	1	9,950372	-1,47113	
4	1,7	5,872202	-1,51204	
5	3	3,331483	-1,53748	
6	5,6	1,78543	-1,55294	
7	10	0,99995	-1,5608	
8	17	0,588225	-1,56491	
9	30	0,333331	-1,56746	
10	56	0,178571	-1,56901	
11	100	0,1	-1,5698	

Виділяємо діапазон значень F(ω) від комірки B3 до комірки B11.

Вибираємо опції Вставка-График-График с маркерами. Отримуємо:

Тиснемо на кнопку «Выбрать данные»:

Изменить тип Сохранить диаграммы как шаблон			
Тип Данны	Ізменить тип диаграммы Как шаблон Тип	Строка/столбеі Выбр Данны	рать ные Макеты диаграмм

Выбор источника данных	
Диапазон данных для диаграммы: ='Лист1(2)'!\$В\$3:\$В\$	11 💽
Строка/с	толбец
Элементы легенды (ряды)	Подписи горизонтальной оси (категории)
🚰 Добавить 📝 Изменить 🗙 Удалить 🔺 🔻	Изменить
Ряд1	1
	2 =
	3
	4
	5 👻
Скрытые и пустые ячейки	ОК Отмена

Тиснемо кнопку «Изменить» під написом «Подписи горизонтальной оси»:

У віконечко «Диапазон подписей оси» вносимо частоти, виділивши їх у таблиці від комірки A3 до комірки A11.

Подписи оси		? 💌
Диапазон <u>п</u> одписей оси:		
='Лист 1 (2)'!\$А\$3:\$А\$11	1	l; 1,7; 3; 5,6
	ОК	Отмена

Тиснемо ОК (двічі).

Отримуємо потрібний графік:

Можна його прикрасити заголовками і легендами.

Аналогічно будується графік φ(ω):

Задача 1.6. Визначити АЧХ і ФЧХ сигналу, що описується дельта-функцією наступного вигляду:

$$\delta(t-t_{\mu}) = \begin{cases} \infty \operatorname{при} t = t_{\mu}; \\ 0 \operatorname{прu} t \neq t_{\mu}. \end{cases}$$

Час дії імпульсу $t_{\rm д}$ взяти рівним номеру варіанту 25.

Розв'язування

Використаємо інтегральне перетворення Фур'є до сигналу $X(t) = \delta(t - t_{\pi})$:

$$S(j\omega) = \int_{-\infty}^{\infty} \delta(t-t_{\pi}) e^{j\omega t} dt$$

Отриманий вираз будемо розглядати як інтеграл від добутку функції $e^{j\omega t}$ та дельта функції. Враховуючи стробуючу дію дельта-функції, можна сказати, цей інтеграл дорівнює значенню функції $e^{j\omega t}$ в момент дії дельта-імпульсу, тобто при $t = t_{\pi}$. Таким чином, $S(j\omega) = e^{j\omega t_{\pi}}$. Маємо показову форму представлення числа $z = re^{j\varphi}$. АЧХ сигналу це модуль спектральної щільності r=1, а ФЧХ — це її аргумент $\varphi=\omega t_{\pi}=25\omega$.

Графіки функцій будуємо у Microsoft Excel аналогічно задачі 1.5. У комірку В2 заносимо номер варіанту. У комірки В3 і С3 вводимо формули для розрахунку $F(\omega)$ і $\phi(\omega)$, отримані в ході розв'язання задачі:

=1 для F(ω);

=\$B\$2*А3 для φ(ω).

Розповсюджуємо дані комірок ВЗ і СЗ вниз для усіх частот.

Α	В	С	
Задача 1.6	5		
Варіант	25		
1	1	=\$B\$2*A3	
1,7	1	42,5	
3	1	75	
5,6	1	140	
10	1	250	
17	1	425	
30	1	750	
56	1	1400	
100	1	2500	
	А Задача 1.6 Варіант 1,7 3 5,6 10 17 30 56 100	ABЗадача 1.6Варіант25П111,7111,7115,611101117113011561110011	ABCЗадача 1.5Варіант251111111115,611110110130156110011002500

Графіки будуємо, використовуючи меню «Вставка-График-График с маркерами».

